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Lowering expression of prion protein (PrP) is a well-
validated therapeutic strategy in prion disease, but additional
modalities are urgently needed. In other diseases, small mole-
cules have proven capable of modulating pre-mRNA splicing,
sometimes by forcing inclusion of cryptic exons that reduce
gene expression. Here, we characterize a cryptic exon located in
human PRNP’s sole intron and evaluate its potential to reduce
PrP expression through incorporation into the 50 untranslated
region. This exon is homologous to exon 2 in nonprimate
species but contains a start codon that would yield an upstream
open reading frame with a stop codon prior to a splice site
if included in PRNP mRNA, potentially downregulating
PrP expression through translational repression or nonsense-
mediated decay. We establish a minigene transfection system
and test a panel of splice site alterations, identifying mutants
that reduce PrP expression by as much as 78%. Our findings
nominate a new therapeutic target for lowering PrP.

Prion disease is a rapidly fatal neurodegenerative disease
caused by the templated misfolding of the prion protein, PrP,
encoded by the prion protein gene (PRNP in humans) (1).
Prion disease naturally afflicts a range of mammals and has
long been modeled in laboratory rodents, in which the full
disease process can be induced. Both genetic (2) and phar-
macological (3, 4) experiments in such models have demon-
strated that reducing the amount of PrP in the brain is
protective against prion disease, inspiring hope that a PrP-
lowering therapy could be used to effectively treat, delay, and
prevent disease in patients and individuals at risk (5). An
RNase H1 antisense oligonucleotide (ASO) targeting PRNP
RNA for degradation is now in preclinical development (3, 4,
6, 7), but additional therapeutic candidates are urgently
needed.

Recently, the FDA-approved drug risdiplam (8–11) and
clinical candidates kinetin and branaplam (12–16) have high-
lighted small molecule modulation of pre-mRNA splicing as
another tool for therapeutic tuning of gene expression.
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Branaplam causes incorporation of a piece of intronic
sequence—variously called a nonannotated exon, cryptic exon,
or poison exon—into mature HTT mRNA, causing a frame-
shift and nonsense-mediated decay (NMD) (15). Inspired by
this work, we were led to inquire whether the architecture of
PRNP would lend itself to disruption via splice site manipu-
lation. PRNP’s coding sequence is located entirely within a
single exon, precluding frameshift strategies. We hypothesized,
however, that inclusion of a novel upstream open reading
frame (uORF) in the PRNP 50UTR could decrease PrP
expression. It is known that uORFs can have dramatic effects
on gene expression (17, 18) either through reduced abundance
of ribosomes on the canonical ORF or possibly through NMD
triggered by the presence of a stop codon prior to the final
splice junction, though the latter mechanism is debated (19).
The existence of Mendelian diseases caused by variants
introducing uORFs (20), the evolutionary constraint of genetic
variants that cause or extend uORFs in dosage-sensitive genes
(21), as well as work with uORF-targeting ASOs (22) under-
score the potential functional impact of uORFs.

Here, we identified a potential uORF within a cryptic exon
located in PRNP’s sole intron, homologous to exon 2 in many
nonprimate species. By genetically strengthening the splice
sites surrounding the cryptic exon located in PRNP’s 50 UTR,
we show that the mutations yielding the most robust inclusion
of exon 2 reduced PrP expression by up to 78% in human cells.
Certain other mutants reduced PRNP transcript levels and PrP
protein expression without yielding cryptic exon inclusion
detectable by qPCR, suggesting multiple mechanisms may be
operative. These efforts nominate a novel strategy for lowering
PrP.
Results

PRNP is a small gene of roughly 15 kilobases (kb) in humans
(Fig. 1A). In all mammals, the entire coding sequence is con-
tained in the final exon of the gene, while the 50UTR is divided
across exons; however, the number of exons differs. In mouse
and most other preclinical species of interest, there are
three constitutive exons (23, 24), with introns 1 and 2 dividing
the 50UTR (Fig. 1B). In Syrian hamsters, exon 2 is subject to
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Figure 1. A cryptic exon in human PRNP. A, human PRNP transcript structure in human brain. Top panels show GTEx (30) v8 bulk RNA-seq coverage—
mean (orange lines) and range (orange shaded area) across 13 brain regions. Coverage depth for exons 1 and 2 is normalized to the max for exon 1; depth
for exon 3 is normalized to the max for exon 3. ATGs representing candidate upstream open reading frames and the canonical open reading frame are
shown as blue triangles. Ensembl GRCh38.p14 annotated transcripts are shown below, canonical in black, alternatives in gray. B, comparison of orthologous
exon 2 sequence in mouse, hamster, and human. Hamster inclusion percentage from ref (25). C, comparison of PRNP canonical and exon 2 novel ATG Kozak
contexts with a sequence logo of human initiation sites (see Experimental procedures). D, relative strength of canonical and novel PRNP ORFs in context.
Shown for comparison are histograms of translational efficiency of all 65,536 (48) possible Kozak contexts (yellow) and of all 18,784 actual human canonical
ORF Kozak contexts (blue), expressed as a percentage of the translation of the most efficient Kozak context, TTCATCATGCA, according to data from Noderer
et al. (28). E, annotated sequence of the PRNP 50UTR if exon 2 were included. Frame is relative to the canonical ORF, and percentile indicates strength of the
Kozak context as a percentile of all possible Kozak sequences, using rankings from ref (28). F, multiple alignment of PRNP exon 2 sequences known to be
constitutively or variably included in mRNA from mouse (23), hamster (25), and sheep (24) versus all orthologous sequences in eutherian mammals that
contain ATGs. ATGs are shown in blue and splice site variants absent from mouse, hamster, or sheep are shown in orange. A full alignment including all
eutherian mammals is shown in Fig. S1. uORF, upstream open reading frame.
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variable splicing and is included in �27% of transcripts (25)
(Fig. 1B). In humans and several closely related primate spe-
cies, PRNP has only two annotated exons, the equivalent of
exons 1 and 3 from other mammals; exon 2 remains as a
cryptic exon within the sole intron (26). For clarity, herein we
will refer to human PRNP exons 1, 2, and 3 and introns 1 and
2, even though the naturally occurring PRNP transcript con-
tains only two exons and one intron.

Although essential splice sites—AG at the A-1 and A-2
and GT at the D + 1 and D + 2 positions—are conserved in
human exon 2, we hypothesized that other nearby base pair
substitutions may contribute to exclusion of this exon,
particularly the loss of the G at the highly constrained D +
5 position (27) (Fig. 1B). Human PRNP exon 2 contains an
ATG in a moderately strong Kozak context (Fig. 1C), esti-
mated to yield 57% maximal translational efficiency, near the
median of canonical ORFs of all other human protein-
coding genes (28) (Fig. 1D). Human PRNP was previously
reported (29) to already contain four uORFs in exon 1;
however, RNA-seq data from human brain tissue (30) pro-
vide no support for transcription initiation beginning this far
upstream: mean RNA-seq coverage at these uORFs is <0.5%
of the peak coverage within exon 1 (Fig. 1A). Thus, if exon
2 were included, its ATG would yield a new, sole uORF
upstream of PRNP’s canonical start codon (Fig. 1E) with the
potential to downregulate PrP expression through its impact
on ribosomal activity (17) (N. Whiffin, unpublished results).
Its stop codon also occurs 22 bp prior to the exon two-
thirds splice junction (Fig. 1E), creating a possible oppor-
tunity to trigger NMD (see Discussion). Alignment of PRNP
exon 2 sequences across all available mammalian species
(Figs. 1F and S1) reveals that exon 2 ATGs are present only
in species with exon 2 splice site variants known or pre-
dicted to exclude exon 2 from mature mRNA, consistent
with the possibility of exon 2 uORF having a strong negative
effect on PrP expression. We thereby hypothesized that
acting through either of these mechanisms, inclusion of
exon 2 and thus the uORF of interest in PRNP mRNA,
would reduce PrP expression.

To test this hypothesis, we first sought to generate a
PRNP minigene system to support facile splice site manip-
ulation, transfection, and screening in cell culture. A 4.8 kb
minigene lacking most of intron 1 yielded no detectable PrP
expression in HEK293 cells by Western blot (Fig. S2). A 6.5
kb construct retaining all of intron 1 and only the first and
last 500 bp of intron 2 (Fig. 2A) expressed robustly and was
used for all subsequent experiments. Codon optimization of
exon 3 allowed for qPCR primer/probe pairs to discriminate
minigene PRNP RNA from endogenous PRNP RNA
(Fig. 2B).

Using this 6.5 kb minigene as a template, we designed a
panel of splice site modifications that we hypothesized
would strengthen exon 2 inclusion in the context of human
PRNP (Fig. 3A). These included (1) installation of the
consensus strongest (31) human splice donor and acceptor
(“canonical splice site (ss)”; six nucleotide changes required);
(2) installation of the mouse Prnp exon 2 splice sites
(“mouse ss”; five changes required); (3) conversion of the
donor +5 site from A to G, as this site shows the strongest
nucleotide preference of any extended splice site position
(27) (D + 5, A > G); (4) conversion of the acceptor −3 site
from A to C, to assess whether this single change could
mimic the effect of installing the consensus human splice
site (A-3, A > C); and (5) conversion of the acceptor −4 site
from T to A to assess whether this single change could
mimic the effect of installing the mouse Prnp splice site (A-
4, T > A).

Each mutant was separately transfected into HEK293 cells
alongside the parent minigene construct and empty vector and
GFP transfection controls and analyzed by qPCR. Each primer/
probe set (Fig. 2B) was designed to amplify only if the targeted
exons are adjacent. In keeping with these expectations, the
empty vector and GFP controls yielded negligible signal for all
primer pairs; trace amplification of exon 1 to 3 may reflect
imperfect allele specificity, as only two bases differ from
endogenous PRNP in the exon 3 codon-optimized primer. The
parent minigene yielded PCR product for exon 1 to 3 but not
for exon 1 to 2 or 2 to 3, reflecting the baseline exclusion of
cryptic exon 2 in a human system.

All five splice site mutants appeared to reduce the amount
of normally spliced PRNP RNA, as measured by the exon 1 to
3 primer pair, with the change being significant for four mu-
tants (Fig. 3B). The two mutants yielding the greatest reduc-
tion—the canonical ss and mouse ss mutants—showed a
corresponding increase in the presence exon 1 to 2 and 2 to 3
junctions (Fig. 3, C and D). For all other constructs, exon 2
remained undetectable, or nearly so, by these primer/probe
sets. Note that the results for exons 1 to 2 and 2 to 3 are
normalized to the highest value obtained for any mutant; 100%
does not necessarily mean 100% exon 2 inclusion.

Immunoblots on cell lysates revealed apparent reductions
in PrP for all mutants tested (Fig. 3, E and F). The canonical
ss mutant yielded 33% and the mouse ss mutant 48% of the
PrP expression level of the parent minigene (Fig. 3F).
HEK293 cells express endogenous PrP, however, at �15%,
the level achieved by transfection of the parent minigene
(Fig. 3, E and F); adjusting for this floor yielded residual PrP
expression of 22% and 38% for the canonical ss and
mouse ss mutants, respectively. Across all mutants, PrP
levels tracked closely with exon 1 to 3 qPCR results, with
significant reductions for mutants D + 5, A > G and A-3,
A > C despite the lack of detectable exon 1 to 2 and 2 to 3
junctions (Fig. 3, C, D and F).

In order to dissect the mechanistic role of the exon 2
uORF in reducing PrP expression, we generated variants of
the canonical ss and mouse ss mutants with the ATG
mutated to CCC (Fig. S3) and transfected them into
HEK293 cells (Fig. 4, A–D). On the absence of the ATG,
exon 1 to 3 splicing was significantly increased for the
mouse ss (Fig. 4A), a partial restoration toward the levels
seen for the wildtype minigene. Exon 2 to 3 splicing was
slightly, but not significantly, reduced for both canonical and
mouse ss (Fig. 4B). Exon 1 to 2 splicing was not compared
because the probe used throughout this study (Fig. 2B)
J. Biol. Chem. (2024) 300(8) 107560 3



B  qPCR Primer/probe binding sites

1 kb

reference 15.4 kb

minigene 6.5 kb

A Minigene construction

5’ (6)-FAM
3’ (6)-TAMRA

forward primer
reverse primer
probe

Key:
EXONSintrons

exon 1-3 primer/probe pair

5’GGCGCCGCGAGCTTCTCCTCTCCTCACGACCGAGGCAGgtaaacgcccggggtgggagga ...
3’CCGCGGCGCTCGAAGAGGAGAGGAGTGCTGGCTCCGTCcatttgcgggccccaccctcct ...

5’... tcattttgcagAGCAGTCATTATGGCTAATCTGGGCTGTTGGATGCTGGTCCTGTTCGTC
3’... agtaaaacgtcTCGTCAGTAATACCGATTAGACCCGACAACCTACGACCAGGACAAGCAG

5’GCTACCTGGTCCGATCTGGGGCTGTGCAAAAAACGGCCTAAACCTGGCGGCTGGAACACCGGAG
3’CGATGGACCAGGCTAGACCCCGACACGTTTTTTGCCGGATTTGGACCGCCGACCTTGTGGCCTC

exon 1-2 primer/probe pair

5’GGCGCCGCGAGCTTCTCCTCTCCTCACGACCGAGGCAGgtaaacgcccggggtgggagga ... 
3’CCGCGGCGCTCGAAGAGGAGAGGAGTGCTGGCTCCGTCcatttgcgggccccaccctcct ... 

5’ttgttgtttttaagGACTCCTGAATATTTTTCAAAACTGAACAATTTCAGCCATGTCTGAGCTT
3’aacaacaaaaattcCTGAGGACTTATAAAAAGTTTTGACTTGTTAAAGTCGGTACAGACTCGAA

5’TCCGTCTTCCTGGAGGCACAAATCTAGTTTAGCTGAACCACAACAGATTgtacatatcct ...
3’AGGCAGAAGGACCTCCGTGTTTAGATCAAATCGACTTGGTGTTGTCTAAcatgtatagga ...

exon 2-3 primer/probe pair

5’AAATCTAGTTTAGCTGAACCACAACAGATTgtacatatcct ... tcattttgcagAGCAGTC
3’TTTAGATCAAATCGACTTGGTGTTGTCTAAcatgtatagga ... agtaaaacgtcTCGTCAG

5’ATTATGGCTAATCTGGGCTGTTGGATGCTGGTCCTGTTCGTCGCTACCTGGTCCGATCTGGGGC
3’TAATACCGATTAGACCCGACAACCTACGACCAGGACAAGCAGCGATGGACCAGGCTAGACCCCG

5’TGTGCAAAAAACGGCCTAAACCTGGCGGCTGGAACACCGGAGGCAGCAGGTACCCTGGACAGGG
3’ACACGTTTTTTGCCGGATTTGGACCGCCGACCTTGTGGCCTCCGTCGTCCATGGGACCTGTCCC

UNDERLINED nucleotides 
     indicate optimized codons

Figure 2. Design of PRNP minigene and primer pairs. A, diagram of minigene versus human reference sequence. Intronic sequence upstream of exon 2
and 500 bp on either end of the intronic sequence downstream of exon 2 are included. B, design of primer/probe pairs used to interrogate splicing of the
minigene. Note that codon optimization in exon 3 (underlines) enables these pairs to discriminate the minigene from endogenous PRNP in HEK293 cells.

A cryptic exon to lower PrP
overlaps the ATG. For both the canonical and mouse ss, the
ATG to CCC mutation partially but not entirely restored
PrP protein levels (Fig. 4, C and D).
4 J. Biol. Chem. (2024) 300(8) 107560
We also sought to confirm our findings in a neuronal cell
line, using mouse N2a cells. The same pattern of splicing
was confirmed for each mutant as observed in HEK293 cells
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Figure 3. Inclusion of exon 2 lowers PrP expression. A, sequence variants of minigene tested in HEK293 cells. B–D, expression of (B) exon 1 to 3 (n = 5–12
biological replicates, meaning transfected wells/variant), (C) exon 1 to 2 (n = 6–12 transfected wells/variant), and (D) exon 2 to 3 (n = 6–10 transfected wells/
variant) junctions in minigene mRNA for each variant transfected into HEK293 cells. Normalized to the template minigene for exons 1–3 and normalized to
the highest-expressing variant for exons 1–2 and 2–3. Note that codon optimization in exon 3 enables discrimination from endogenous PRNP. E,
immunoblot (POM2 primary antibody (49)) of PrP expression in HEK293 cells transfected with each variant. The molecular weight (MW) ladder marker at the
top where the blot is cut off is 55 kDa. F, quantification of PrP expression from ≥4 immunoblots per construct, n = 4–8 transfected wells/variant. In all
barplots, bar heights indicate means, and error bars indicate 95% confidence intervals. In B, C, D, and F, stars indicate statistical significance according to an
ordinary one-way ANOVA and Dunnett’s multiple comparison test with a single pooled variance. Overall ANOVA p < 0.0001. Individual tests **p < 0.01 and
****p < 0.0001. Exact p values are provided in Tables S2 and S5. PrP, prion protein.

A cryptic exon to lower PrP
(Fig. 4, E–G). To distinguish minigene-expressed human PrP
from endogenous mouse PrP, we used the human-specific 3F4
antibody. Although the magnitude of effect was more modest
than observed in HEK293 cells, PrP expression was reduced
for each mutant tested, with the canonical ss again providing
the deepest reduction (Fig. 4, H and I).
Discussion

We find that splice site manipulation can modulate the level
of PrP in human and mouse cell systems, reducing the levels of
this disease-causing protein by 78% in the strongest condition
tested. For the strongest mutants, which incorporated 5 to 6
nucleotide changes across the splice donor and acceptor sites,
this reduction in protein level was observed in tandem with
exon 2 inclusion at the mRNA level. Our data are consistent
with a role for uORF-mediated translational repression; how-
ever, we cannot rule out that NMD may be at work, with the
exon 1 to 2 and 2 to 3 qPCR simply picking up the small
fraction of exon 2-including mRNA that has not yet been
degraded. NMD was long held to require 50 bp of distance
between the stop codon and the splice donor (32) versus only
22 bp here, but data from protein-truncating variants in hu-
man tissues show this is not a hard-and-fast rule and that
distance from the splice donor is but one of many imperfect
predictors of NMD (33). Still, the evidence for NMD caused by
uORFs in human genes is equivocal (19, 34). Abolition of the
uORF by mutation of its initiation codon ATG to CCC
increased exon 1 to 3 splicing for the mouse ss variant, which
would be consistent with a role for NMD, but no increase in
exon 1 to 3 splicing was detectable upon uORF abolition for
the canonical ss. Further, uORF abolition only partially, but
not completely, restored protein expression level, indicating
that the uORF is not fully responsible for the reduction in
expression. Moreover, the single point mutants tested here
reduced PrP and normal exon 1 to 3 splicing without yielding
any detectable exon 1 to 2 and 2 to 3 splicing. Thus, additional
mechanisms not foreseen by our initial hypothesis could be
J. Biol. Chem. (2024) 300(8) 107560 5
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Figure 4. Contribution of uORF and replication in a neuronal cell line. A–D, HEK293 cells. As in Fig. 3, B and D, E, and F but with the ATG to CCC mutants
included. Mutant sequences are provided in Fig. S3. (A) Exon 1 to 3 (n = 6 transfected wells/variant), (B) exon 2 to 3 (n = 6 transfected wells/variant), (C)
representative POM2 immunoblot, (D) quantification of PrP expression from two immunoblots per construct, n = 4 transfected wells/variant. E–I, N2a cells.
As in Fig. 3, B–F. E, exon 1 to 3 (n = 6 transfected wells/variant), (F) exon 1 to 2 (n = 6 transfected wells/variant), (G) exon 2 to 3 (n = 6 transfected wells/
variant), (H) representative 3F4 immunoblot, (I) quantification of PrP expression from two immunoblots per construct, n = 4 transfected wells/variant. In all
barplots, bar heights indicate means, and error bars indicate 95% confidence intervals. In A, B, D, E, F, G, and I, stars indicate statistical significance according
to an ordinary one-way ANOVA and Dunnett’s multiple comparison test with a single pooled variance. Overall ANOVA p < 0.0001. Individual tests **, p <
0.01, ***,p < 0.001 and ****, p < 0.0001 relative to wildtype construct. ++p < 0.01, ++++p < 0.0001 relative to corresponding variant without ATG to CCC
mutation. Exact p values are provided in Tables S2 and S5. PrP, prion protein; uORF, upstream open reading frame.
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operative: for example, these mutants might cause inclusion of
exon 2 but also retention of a portion of intronic sequence,
causing the exon 1 to 2 and 2 to 3 qPCR to not amplify, while
resulting in a less stable transcript.

Our study has several limitations. The battery of splice
manipulations that we tested was limited, leaving open the
possibility that other splice site changes could yield more
dramatic results. As our experiments were limited to human
cell culture, in vivo relevance was not demonstrated. We also
utilized a transfected minigene rather than editing of the
endogenous PRNP gene in cells. Most importantly, the genetic
engineering used to establish this proof of concept does not
offer a direct path to therapeutic application.

In principle, several therapeutic modalities could be
deployed to modulate PRNP splicing (35, 36). ASOs are a well-
established modality capable of causing exon inclusion (37)
but may be unlikely to be deployed toward this end: given the
desired mechanism of reducing PRNP expression, RNase H1
ASOs are likely to yield greater target suppression than splice-
modulating ASOs. Adenine base editors have been successfully
deployed to disrupt splice sites (38, 39); however, the single
point mutants identified here had relatively modest effects on
PrP expression. Instead, small molecule modulation of PRNP
splicing is the most enticing possibility suggested by our re-
sults. PrP-lowering small molecules could have desirable
pharmacologic properties, particularly in terms of distribution
to deep brain structures less well-reached by oligonucleotides
(40). Attempts to discover small molecules to bind PrP have
been unsuccessful (41), so splicing could offer a new mecha-
nism for small molecule therapies in prion disease. Because
PRNP does not share the preferred splice site motifs of any
known splice-modulating small molecule series (10, 12, 14),
discovery of a modulator would require a new screening effort.
One challenge is that the mutant that reduced PrP expression
most dramatically required six nucleotide changes, suggesting
a high energy barrier to modulating this splicing event.

Despite these limitations, we are encouraged to discover a
novel mechanism by which PrP expression can be influenced.
PrP’s role in prion disease is uniquely pivotal, as it serves as
protein-only pathogen, amplification substrate, and mediator
of neuronal neurotoxicity. The therapeutic benefit of PrP
lowering has been shown across multiple prion strains (4),
both through genetic reduction and by use of ASOs, and evi-
dence for tolerability is provided by multiple nonhuman spe-
cies as well as human genetics (42–47). Given this clarity, PrP
and its precursors are disease targets worthy of ongoingly
creative angles of attack.
Experimental procedures

Kozak sequences

Files were retrieved from the Matched Annotation
from NCBI, and EMBL-EBI (MANE) database (version
1.0) https://ftp.ncbi.nlm.nih.gov/refseq/MANE/MANE_human/
release_1.0/cDNA Transcript sequences from the MANE.
GRCh38.v1.0.refseq_rna.fna.gz file were then filtered to only
MANE Select transcripts, and an 11-bp context surrounding
the CDS start were extracted, excluding transcripts where a
11 bp CDS context could not be retrieved, as in the case for a
leaderless mRNA. To generate a sequence logo, these 11-bp
sequences were then superimposed to align with each other
and plotted using ggplot2 and the R package ggseqlogo using
the bits method. To generate a histogram, the relative trans-
lational efficiencies of each sequence were taken from Noderer
et al. (28) and normalized to the most efficient Kozak
sequence.

Comparative genomic analyses

PRNP sequences, and multiple alignments thereof, were ob-
tained from UCSC Genome Browser (48) (accessed September
6, 2023). Kozak sequence strength percentiles were obtained
from the rank order among all possible Kozak sequences re-
ported by Noderer et al. (28). GTEx (30) RNA-seq coverage
data were obtained from UCSC Table Browser (accessed
November 14, 2023). Exon 1 and 2 in diagrams correspond to
the canonical Ensembl transcript ENST00000379440.9.

Cell culture and transfections

HEK293 (ATCC cat no. CRL-1573) and N2a (ATCC cat no.
CCL-131) cells were maintained in Dulbecco’s modified Ea-
gle’s medium/F-12 (Gibco, cat no. 11320033) supplemented
with 1% penicillin-streptomycin (Gibco, cat no. 15140163) and
10% FBS (Gibco, cat no. 16000044). Cells were periodically
surveilled for mycoplasma (Lonza cat. no. LT07-418 and
LT07-518) and were always negative. For transfection, cells
were plated in a 12-well or 96-well plate for protein or RNA
analysis, respectively, and were allowed to adhere for 18 h.
Cells were then transfected using Lipofectamine 3000 trans-
fection reagent (Invitrogen, cat no. L3000015) according to the
manufacturer protocol. In short, lipofectamine 3000 reagent
was diluted in Opti-MEM I reduced serum media (Gibco, cat
no. 31985088) for a final mixture containing 3% lipofectamine
3000. In a separate tube, 1 mg (12-well plate) or 0.1 mg (96- well
plate) DNA was mixed with 4% P3000 reagent in Opti-MEM.
The two tubes were slowly mixed and then allowed to incubate
at room temperature for 10 min before applying the mixture to
the cell media. Transfection was incubated on cells for 48 h
before lysing cells.

Plasmids

The PGK promoter (addgene 82579) was inserted into the
backbone of the pcDNA3.1(+) plasmid (addgene V790-20),
removing the CMV promoter, by digesting the vector with
NruI and NheI. The minigene was synthesized with codon
optimized exon 3 and then was ligated into this pcDNA3.1(+)-
hPGK between NheI and EcoRI.

Western blot analysis

Following the 48 h transfection, cells were washed thor-
oughly with ice-cold PBS and then were lysed in 0.2% CHAPS
containing cOmplete, Mini, and EDTA-free Protease Inhibitor
Cocktail (Sigma, cat no. 4693159001). Protein concentration
was determined using a DC protein assay kit (Bio-Rad, cat no.
J. Biol. Chem. (2024) 300(8) 107560 7
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5000112). NuPAGE 4 to 12%, Bis-Tris, mini protein gels
(Invitrogen, cat no. NP0323BOX) were loaded with 10 mg total
protein for each sample and run at 180 V in 1x MES buffer
(Thermo, cat no. NP0002). Gels were transferred to PVDF
membranes using an iBlot two device (iBlot 2 Transfer Stacks,
PVDF, mini, Thermo, cat no. IB24002), 20 V, 7 min. Mem-
brane was then cut right under 55 kDa band before blocking
with LICOR TBS blocking buffer (LICOR, cat no. 927-60001),
1 h at room temperature. Primary antibodies were diluted in
LICOR TBS blocking buffer + 0.2% Tween-20 (Teknova, cat
no. T0710) and incubated at 4 �C overnight: ⍺-Tubulin
(Invitrogen, cat no. A11126), final 100 ng/ml; POM2 (Millipore,
cat no. MABN2298), final 50 ng/ml; 3F4 (Sigma-Aldrich, cat
no. MAB1562), final 0.1 ng/ml; and 6D11 (BioLegend, cat no.
808001), final 2 mg/ml. The specificity of POM2 has been
characterized extensively elsewhere (49). Membranes were
washed in 1x TBST and then incubated in secondary antibody
(IRDye 800CW Goat anti-Mouse IgG, LICOR, cat no. 926-
32210) diluted in LICOR TBS blocking buffer + 0.2% Tween-
20 and incubated at room temperature for 1 h. Membranes
were again washed with 1x TBST then scanned on a LICOR
Odyssey CLx Infrared Imaging System. Blots were analyzed in
Fiji (50). The same box was used for every PrP lane, with raw
integrated density (the sum of the values of the pixels in the
box) as the output value. Light contrast images were used for
tubulin quantification and dark contrast images for PrP
quantification. Background-subtracted PrP intensity was
normalized to background-subtracted tubulin intensity. Raw
uncropped gels are available in this study’s online git
repository.
qPCR

Following the 48 h transfection, cells were lysed using the
Cells-to-CT 1-step Taqman Kit (Invitrogen, cat no. A25602)
using the manufacturer protocol. In short, media were
aspirated, each well was washed with 200 ml of ice cold 1x
PBS, and then wash was completely aspirated. Room tem-
perature DNase/lysis solution (0.5 ml: 50 ml) was added to
the cells and then plate was put on a shaker for 5 min.
Finally, 5 ml of room temperature stop solution was added
to the cells and then plate was put back on the shaker for
2 min before moving the plate to ice. RT-PCR samples were
prepared using Taqman 1-Step qRT-PCR master mix and
Taqman gene expression assays for human TBP (Invitrogen,
cat no. Hs00427620_m1) or mouse Tbp (Invitrogen, cat no.
Mm00446971_m1). Custom primers and probes were or-
dered from Genscript to quantify the different splice vari-
ants (see Table S1 for sequences and Fig. 2 for alignment on
the minigene sequence). Samples were run on a Quant-
Studio 7 Flex system (Applied Biosystems) using the
following cycling conditions: reverse transcription 50 �C,
5 min; reverse transcription inactivation/initial denaturation
95 �C, 20 s; amplification 95 �C, 3 s, 60 �C, 30 s, 40 cycles.
Each biological sample was run in duplicate, and the level of
all targets were determined by DDCt whereby results were
first normalized to the housekeeping gene TBP and then to
8 J. Biol. Chem. (2024) 300(8) 107560
the wildtype template (exon 1–3) or the mouse ss (exon 1–2
and 2–3), depending on the primer pair used.
Experimental design and statistical analysis

All data were generated from at least three independent
transfections, N are as indicated in figure legends. Throughout,
all error bars in figures represent 95% confidence intervals. All
data were compared with an ordinary one-way ANOVA and
Dunnett’s multiple comparison test, with a single pooled
variance. p values less than 0.05 were considered nominally
significant. In plots, **p < 0.01, ***p < 0.001, and ****p <
0.0001. Intron/exon diagrams were plotted in R, qPCR analysis
was performed in Google Sheets, and barplots and statistical
analyses were performed in GraphPad Prism.
Data availability

Source data for figures are provided in the form of supple-
mentary tables. Raw data, Prism files, and R source code are
available at https://github.com/ericminikel/cryptic_exon.
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